K and Real-time Data

This paper is intended to be a brief introduction to the real-time data facilities currently available
ink. After reading this paper and working through the examples you should be able to incorpo-
rate real-time data into your x application.

x applications can currently access real-time market data through the Reuters Triarch network. At
present, only record-based services are supported. The examples in this paper will use the ser-
vices known as Marketfeed and Selectfeed. In order to run the examples, your userid/workstation
name combination must be authorized to access the Triarch network. If you need help with this,
consult your system administrator, or as a last resort, contact the x group (email k-group).

A Quick Demonstration

The basic utility library needed to access real-time data is the ma library, located at /ubs/itsu/
opt/md/1.0/md.k (Or /ubs/k/md.k). Complete documentation of the functionality in this pack-
age is available in the file /ubs/itsu/opt/md/1.0/md.doc (Appendix B of this paper).

rousseau[nnyror]65: k
K(12/7)Copyright (c) 1993-1994 Atlantis Software, All Rights Reserved.

Copyright (c) 1994-1995 Union Bank of Switzerland, All Rights Reserved.
Control-C to interrupt \ to list commands \\ to exit

\1 /ubs/k/md
\v .
k t md

Note that the md directory now exists. It contains the functions we need. The first thing to do is
run .md.client[]. This function announces our intention to subscribe to real-time data and will
instantiate the real-time directory, .=R, in our process. It will fail if we do not have access to the

Triarch network. It is not strictly necessary to run this function first, but it is the best way to check
for access to Triarch.

.md.client[]
(result is _n)

The best way to perform this check in an application is under error-trap protection:

@[.md.client;_n;:]
(0;)

Now let’s subscribe to data on the March 1996 U.S. Treasury Bond futures contract from the Chi-
cago Board of Trade. The information on this, and most other futures contracts, is available via

the Marketfeed service. A quick check of the handles in .R, the real-time directory, shows that
Marketfeed is indeed available.

I*.R
*EUROBROKER “GW_CDBTST “GOBT ' IDN_MARKETFEED “LIBERTY ‘GARBAN ‘TULLET “HILL
“IPS "DDS ‘KRI "MLCS °"DDSDEV "TELI “KNIGHT RIDDER_PAGE “TRADITION ‘GW_CDBREC
*GW_CSRVREC ‘PATRIOT ‘RMJ ‘CHAPDELAINE ‘IDN_SELECTFEED ‘TELERATE ‘CANTOR 'PRE-
BON ‘k_test “k_testl ‘k_test2 “TELERATE_2 “TIPS_PAGE ‘TIPS_REC

Note that currently, ITDN_MARKETFEED has no subscriptions:

!*.R.IDN_MARKETFEED
()

To subscribe to data, the function .md.sub[src;item] is run. src is the service name, in this
case ‘'IDN_MARKETFEED. item is the name of the instrument, according to Triarch. (Instrument
names are commonly referred to as “rics”). The ric of the March 96 Bond contract is *usHs.

.md.sub[IDN_MARKETFEED; ‘USH6]
“USH6

The result of .md. sub is a symbol, which is the name of the subtree of the service directory which
will now receive real-time updates from Triarch. The result will not always be the same as the
item, since rics sometimes have symbols in them that are illegal in x identifiers. For instance, the
ric for the current 30 year U.S. Treasury bond from GOVPX is us30yT=px. Since = is an illegal
character in x identifiers, the result of .md. sub[‘*IDN_SELECTFEED; * "US30YT=PX"] (and the
name of the subtree) will be *us30yYT_px.

Let’s also subscribe to the Ten Year Note contract and the Five Year Note contract from the same
source.

.md.sub[' IDN_MARKETFEED;]’ ‘TYH6 FVH6
‘TYH6 ‘FVH6

! ' .R.IDN_MARKETFEED
‘USH6 ‘TYH6 ‘FVH6

Triarch supplies a large amount of data about each instrument.

! * .R.IDN_MARKETFEED.USH6
“PROD_CATG ‘RDNDISPLAY ‘DSPLY_NAME ‘RDN_EXCHID ‘TIMACT ‘TRDPRC_1 ‘TRDPRC_2
"TRDPRC_3 “TRDPRC_4 “TRDPRC_5 ‘NETCHNG_1 ‘HIGH_1 ‘LOW_1 ‘PRCTCK_1 ‘CURRENCY
"TRADE_DATE ‘ACTIV_DATE ‘TRDTIM_ 1 ‘HST_CLOSE ‘BID ‘ASK ‘NEWS ‘NEWS_TIME ‘BID-
SIZE "ASKSIZE “ACVOL_1 ‘CONTR_MNTH ‘OPEN1 ‘OPEN2 ‘OPNRNGTP ‘CLOSEl ‘CLOSE2
"CLSRNGTP "TRD_UNITS ‘LOTSZUNITS ‘LOT_SIZE ‘PCTCHNG ‘LOCHIGH ‘LOCLOW ‘OPINT_1
"OPINTNC ‘EXPIR_DATE ‘SETTLE ‘UPLIMIT ‘LOLIMIT ‘NUM_MOVES ‘OFFCL_CODE ‘HSTCLS-
DATE ‘LIMIT_IND ‘TURNOVER ‘BOND_TYPE ‘BCKGRNDPAG ‘YCHIGH_IND ‘YCLOW_IND
"PRC_QL2 'MKT_ST_IND ‘TRDVOL_1 ‘HIGHTP_1 ‘LOWTP_1 ‘LOT_SIZE_A ‘RECORDTYPE
"ACT_TP_1 ‘ACT_TP_2 ‘ACT_TP_3 ‘ACT TP_4 ‘ACT_TP_5 ‘SEC_ACT_1 ‘SC_ACT TP1 ‘SET-
TLEDATE "VOL_FLAG 'IRGPRC “IRGVOL ‘IRGCOND ‘TIMCOR ‘SALTIM ‘TNOVER_SC ‘HST_VOL
'SESS_HIFLG "“SESS_LOFLG 'SSPRNG1l ‘SSPRNG2 ‘SSPRNGTP ‘RSMRNG1 ‘RSMRNG2 ‘RSM-
RNGTP 'VOL_DATE ‘PRIMACT_1 ‘PRIMACT_ 2 ‘PRIMACT_3 ‘PRIMACT 4 ‘PRIMACT 5
"BCAST_REF 'PRV_HIGH ‘PRV_LOW ‘CROSS_SC ‘OFF_CD_IND ‘SEQNUM ‘PRNTBCK ‘F1067
‘F1078 'F1080 ‘F1352 ‘F1379 ‘F1383

For our quick demo, let’s put up a small screen showing the ric, name, price, time of last update,
and change on the day, for each instrument we have subscribed to.

\d app
rics..d:"!.R.IDN_MARKETFEED" / ric of the instrument
names..d:".R.IDN_MARKETFEED[; ‘DSPLY NAME]" / name of the instrument
prices..d:“.R.IDN_MARKETFEED[;‘TRDPRC_l]' / last trade price
times..d:".R.IDN_MARKETFEED[;‘TRDTIM_l]" / last trade time
chgs..d:“.R.IDN_MARKETFEED[;‘NETCHNG_l]" / net change on the day
\d ~
*show$ “app

‘app

USH6| US T BONDS MarG [121.5625 17:400 0 21575
TYHE| US T NOTES Mar6 | 114.6562 1736 0 15635
FVH6| US T NOTES Marb | 110.46868 17:36/ 0. 109575

One important point to keep in mind when programming applications using these facilities is the
asynchronous nature of the processes involved. If the code executed thus far was gathered up into
a function and executed, the function would fail.

rousseau[nnyror]73: k

K(12/7)Copyright (c) 1993-1994 Atlantis Software, All Rights Reserved.
Copyright (c) 1994-1995 Union Bank of Switzerland, All Rights Reserved.

Control-C to interrupt \ to list commands \\ to exit

\1 /ubs/k/a/rt/rtdemol.k

rt
{

.md.client[]

.md.sub[‘IDN_MARKETFEED;]“USHS‘TYHG‘FVHG
.app.rics..d:"!.R.IDN_MARKETFEED"
.app.names..d:".R.IDN_MARKETFEED[;‘DSPLY_NAME]“
.app.prices..d:".R.IDN_MARKETFEED[;‘TRDPRC_l]"
.app.times..d:".R.IDN_MARKETFEED[;‘TRDTIM;l]"

.app.chgs..d:".R.IDN_MARKETFEED[;‘NETCHNG_I]'
‘shows$" .k.app

R

}
\e 1
rt[]
rank error

{.R.IDN_MARKETFEED[;‘DSPLY;NAME]}

A

This happens because the code executes faster than the time needed for the data to flow into the

real-time directory. When x tries to evaluate the dependency definition for names, there are as yet
no items in the subdirectories:

> 1*.R.IDN_MARKETFEED.USH6
()

So, while what we’ve done so far is fine for learning and experimentation, another approach is
required for real applications. Before tackling the problem of asynchronous programming, let's
examine how to monitor the status of the connection between x and Triarch.

The MD Attribute Directory

As shown above, the real-time directory, .R, is instantiated when the function .md.client[] is
run. The subdirectories of .R are the available Triarch services, such as * IDN_MARKETFEED. Each
of these subdirectories has a special attribute directory named mp which always contains three
entries: status, text and type.

{'.R.IDN_MARKETFEED.
I\MD
i* R.IDN_MARKETFEED. .MD
‘type ‘status ‘text
.R.IDN_MARKETFEED. .MD
. ((“status; ‘valid;)
(*type; “record;)
(Ttext;*";))

The type attribute will have the value *record, ‘page or ‘unknown. The latter value is a transient
condition possible during a brief period following the execution of .md.client (]. The status
attribute will have the value *valid when the service is operating normally and delivering
updates, ‘invalid when there is a temporary interruption of service and ‘closed when the ser-
vice has shut down. As with the type attribute, the status attribute may also have a value of
‘unknown just after the execution of .md.client []. The text attribute may contain a string
elaborating further on the status of a service. The default value of text is **. One way to utilize
this information in an application is to put a trigger on the status attribute. When status
changes, your trigger code can take appropriate action, such as informing the user, or attempting
to reconnect (in case the service becomes ‘closed).

An mp directory also exists one level down from the service subdirectories; that is, at the ric level.

.R.IDN_MARKETFEED.USH6..MD
. ((“status; ‘valid;)
(“text;"";))

Notice that there is no type attribute at this level. Triggers can also be used here to monitor the
status of individual subscriptions, or, the value of status can be displayed in a table along with
other real-time data.

N N - - O . . .

\d app
status..d:".R.IDN_MARKETFEED[~!.R.IDN_MARKETFEED;\MD;‘status]"

0

US T NOTES Mare | 114.6B875
US T NOTES Mar6 | 110.4688

Triggers and Asynchronous Programming

Triggers on the ‘status attribute of the Mp directory can be used to solve the above-mentioned
problem of the program running faster than the subscription process. The idea here is to preset a
trigger on the status attribute of each ric in the real-time dictionary before subscribing. The trig-

ger displays the screen when the status of all the rics are “valid. Here's the complete script fol-
lowed by a sample session where the code is run:

\1l /ubs/k/md
\d .rt
Feed: ' .R.IDN_MARKETFEED

app.rics..d:"!.R.IDN_MARKETFEED"

app.names. .d:" .R.IDN_MARKETFEED|(; *DSPLY_ NAME] "
app.prices..d:“.R.IDN_MARKETFEED[;‘TRDPRC_l]"
app.times..d:".R.IDN_MARKETFEED[;‘TRDTIM_l]"
app.chgs..d:".R.IDN_MARKETFEED[;‘NETCHNG_l]"

demo: {
.md.client([] /setup .R
rics: 'USH6 ' TYH6 'FVH6 /rics we want
paths:~‘$(((($Feed),"."),/:($rics)).\:"."),\:".MD.status“ /paths to triggers
trigs: (".rt.trig[\"",/:$rics),\:"\"]" /triggers
paths .[; t;:;] 'trigs /set triggers
.md.sub [IDN_MARKETFEED;] 'rics /subscribe

}

trig:{[ric]/trig

“O0:ric," ", ($.(_v)),"\n" /which one got updated
if[~&/‘valid~/:Feed[~!Feed;‘MD;‘status];:_n] /if any are not valid, exit
‘shows$" .rt.app /otherwise, show the screen
}
5

rousseau [nnyror]81l: k

K(12/7)Copyright (c) 1993-1994 Atlantis Software, All Rights Reserved.
Copyright (c) 1994-1995 Union Bank of Switzerland, All Rights Reserved.

Control-C to interrupt \ to list commands \\ to exit

\l /ubs/k/a/rtdemo2
.rt.demo[]
USH6 pending
TYH6 pending
FVH6 pending
USH6 valid
TYH6 valid
FVHS valid
/at this point, the screen pops up

U.S. Treasury Bills, Notes & Bonds

In order to receive, calculate and display real-time pricing data on U.S. Treasury securities, sev-
eral pieces of information must be known. First the Reuters identifier, or ric, must be determined.
Next, the indicative information for the securities to be monitored must be retrieved from a secu-
rities database. Finally, the subscription for real-time data must be made, and the appropriate trig-
gers put in place. For the following example, we will retrieve GOVPX data from the Selectfeed
service and use indicative data from the EJV databases. We will set up a screen that displays the
current price/discount rate and bond equivalent yield for the current U.S. On-The-Run Treasuries,
including the 3, 6 and 12 month bills, the 2, 3, 5 and 10 year notes, and the 30 year bond. All of
the code for this example is located in the script /ubs/k/a/rt/rtdemo3.k.

First we need to load several utilities:

\1l /ubs/k/md / real-time utilities

\1l /ubs/k/i/servers / k data server utilities
\1 /ubs/k/f/b / price-yield analytics
\1l /ubs/k/a/utils / miscellaneous utilities

Next, we ask the EJV data server for a list of the current On-The-Run cusips:

otr:*|.i.sync[ejv_mike; (‘otr;)]

otr
T"912794X7" “"912794z4" “*9127942B" ‘v912827V9" “%¥912827V7" “"912827W2"
*"912827V8" *"912810EV"

Then we retrieve the indicative data for those securities:

!data:*|.i.sync[ejv_mike; (" bonds;, $otr)]
‘amt_iss_tot ‘amt_outsd ‘asset_id ‘asset_status_cd ‘asset_templt_cd
‘call_sched_fl ‘“cpn_class_cd ‘cpn_rate ‘cpn_type_cd “cusip ‘dated_dt
‘days_to_settle ‘day_cnt_cd ‘eom_pmt_fl ‘er_score ‘fig_rule cd “first_cpn_dt
“fund_sched_fl ‘“iss_dt ‘iss_price “iss_yld ‘last_cpn_dt ‘mat_dt ‘mat_type_cd
‘native_yld_type_cd ‘orig_spread ‘pmt_freq cd ‘pricing bmk_id ‘put_sched_fl
‘rate_sched fl ‘redemption_value ‘standard_vyld_type_cd ‘ticker ‘call_sched
“fund_sched ‘fund_terms ‘put_sched ‘rate_sched

data is a dictionary of lists. In order to proceed with the example, it must be transformed into a
list of dictionaries.

data:.ul.dv2vd([data] / dictionary of vectors to vector of dictionaries
#data / so now there are 8 dictionaries

!data[0] / and each one has the same handles as the original
‘amt_iss_tot ‘amt_outsd ‘asset_id ‘asset_status_cd ‘asset_templt_cd
‘call_sched_fl ‘cpn_class_cd ‘cpn_rate ‘cpn_type_cd ‘cusip ‘dated_dt
‘days_to_settle ‘day_cnt_cd ‘eom_pmt_fl ‘er_score ‘fig rule_cd ‘first_cpn_dt
" fund_sched_f1 ‘iss_dt ‘iss_price ‘iss_yld ‘last_cpn_dt ‘mat_dt ‘mat_type_cd
‘native_yld_type_cd ‘orig_spread ‘pmt_freq cd ‘pricing_bmk_id ‘put_sched_fl
‘rate_sched_f1l ‘redemption_value ‘standard_yld_type_cd ‘ticker ‘call_sched
‘fund_sched ‘fund_terms ‘put_sched ‘rate_sched

Lastly, we need the rics of the issues in order to subscribe to the Triarch data:

#allcusips:*].i.sync[‘ejv_mike;(‘Cusips;)] / retrieve all the cusips
248
#allrics;*].i.sync[‘ejv_mike;(‘pxrics;)] / retrieve all the rics
248
rics:allrics@&allcusips _lin otr / keep just the ones we want
rics

T"US321T=PX" " "US620T=PX" T "USD12T=PX" ‘"US53/N97T=PX" *"US54/N98T=pX"
" "US55/NO0T=PX" ‘*"US57/NO5T=PX" ""US67/825T=PX"

Now we have the data required. The remaining steps are to subscribe to the real-time data and set
up a trigger which will cause the appropriate calculations to run whenever a new price arrives
from Triarch. One way to do this is to write a cover function to initialize the portions of the real-

time directory required, set the trigger, and request the subscription from Triarch. Here is a sam-
ple function to do this:

-rt.subscribe: { [src;ric;data] /subscribe
/subscribes from src, to ric, with indicative info data; returns id
fna:-999999999.0 /floating pt na
dir:"$".R.",$src /real-time dictionary
id:.md.sub[src;ric] /subscribe to real-time data
. [dir; (id; 'Ric); :;ric] /assign security ric
.[dir; (i4; Yield);:;fna) /initialize yield
-[dir; (id; Data) ; :;data] /set indicative data dict.
- [dir; (id; "TRDPRC_1);:; fna] /initialize trade price
.[dir;(id;‘TRDTIM_l);:;“"] /initialize trade time

.[dir;(id;‘DSPLY_NAME);:;""] /initialize display name
.[dir;(~id;‘t);:;”.rt.update[_v;]'*_i;"] /set trigger
id}

Let’s examine what subscribe is doing in detail. The first argument, src, is the name of the ser-
vice from which we are subscribing. The two services we are using in these examples are

' IDN_MARKETFEED and ‘IDN_SELECTFEED. The second argument, ric, is the previously
described Triarch security identifier. The last argument, data, is a dictionary of indicative data
for the security being subscribed to. This includes the standard info needed to run price/yield cal-

culations on Fixed Income securities, such as coupon rate and maturity date. The main idea of
this function is to add a few extra variables to the real-time data structure. (Since Triarch fields
are always all uppercase, a useful convention when adding application-specific information fields
to these directories is the use of mixed case names.) These additional fields will hold both extra
information needed by our application, as well as results generated by the analytics.

Note that the trigger is set on the entire ric subdirectory. This means that the trigger will run
whenever any field in the directory is updated by the Triarch subscription. The trigger function,
update, is passed the name of the subdirectory (_v) and is invoked once for each field updated
(_i) by way of an “each” expression. Using an each expression simplifies the logic of the trigger
function, since only one field will be handled at a time.

Here is the update trigger function:

.rt.update: {[v;i] /update
/trigger for securities receiving data from triarch
if[i~"TRDPRC_1
res:calc[v[‘TRDPRC_l];*v[‘Data];‘Price;*_ltime L]
@[v; ‘Yield;:;res['yield]]]
}

The update function first checks the value of i to see if the trade price, TRDPRC_1, has been
updated. If not, update ends. If TRDPRC_1 is the changed field, the price/yield analytic, calc,
is run, and the results are saved back into the active subdirectory.

Another alternative is to monitor not only the Troprc_1 field, but also the BID and AsK fields.
Typically, a new field called ot (for “quote”) is defined as either the bid/ask midpoint, or the last
trade price. If either BID or AsK is empty, Ot remains unchanged. Otherwise ot is set to the aver-
age, and the price/yield analytic is rerun. Calculations can also be run for the individual BID and
ask numbers, and the times can be saved. The code to do all of that looks like this:

.rt.altupdate:{[v;i]/alternative update function
if[i _in “BID'ASK' TRDPRC_1
if[|/b:*BID'ASK _lin ,i /if we got bid or ask,
res:calc[v[i];*v[Datal; Price;Trade] /run the calcs
@[v;*(‘Biineld‘BidTime;‘AskYield‘AskTime)@&b;:;res[‘yield],_t]
if[~|/v['BID'ASK] _lin DNA;@[v; Qt QtTime; :; (.5*+/v[BID'ASK]),_t]]]

if[i~"TRDPRC_1 /if we got trade, set Qt to it
@[v; 'Qt ' QtTime; :;v[i],_t]]
res:calc[v['0Qt];*v[Datal; Price;Trade] /always run calcs for Ot

@[v;‘Yield‘MDur‘PVOl;:;res[‘yield],res[‘risks;‘mduration‘val]]]
}

The examples here use .rt.update.

The calculation function looks like this:

.rt.calc: { [quote;data; type; trade] /calc
/get yield given price or discount quote
/data is indicative data
/type is ‘Yield or ‘Price (if ‘Price, may be changed to ‘Discount)
/trade is trade date
if[~type=‘Yie1d;type:*(‘Price‘Discount)@&data[‘asset_templt_cd]=‘TC‘TD]
req:.+((given ‘rate ‘calc_risks ‘deal_date);(type;quote;l;trade))
res:.b.calc_rslt[req;data]
if[~0O=res['stat]; 'res['mesg]]
res[outp]}

Now let’s put it all together. One way to start is to create a template directory to hold a "proto-
type" of the screen variables.

\d .rt.setupOne /template for basic calculator

Ric..d:"!.R.IDN,SELECTFEED"
Status..d:".R.IDN_SELECTFEED[~!.R.IDN_SELECTFEED;‘MD;‘StatuS]“
Time..d:".R.IDN_SELECTFEED[;‘TRDTIM_l]”

Time..f: .ul.tsFmt

Name..d:".R.IDN_SELECTFEED[;‘DSPLY_NAME]"
Name..f:163

Price..d:".R.IDN_SELECTFEED[;‘TRDPRC_l]"
Price..f£:10.6$
Yield..d:".R.IDN_SELECTFEED[;‘Yield]"
Yield..£:7.3$

Yield..l:"vYield"

We also need a set up function which will perform all the preliminary steps outlined above:

-rt.setup: {[]/setup
if[*@[.md.client;_n;:]
.ul.suicideNote["You Do NOT Have Access To Triarch Real-Time Data";10]

> _Ti] /suicideNote is an alertbox
otr:*[.i.sync[‘ejv_mike;(‘otr;)] /on-the-run cusips
data:*|.i.sync[‘ejv_mike;(‘bonds;,sotr)] /and indicative data
data:.ul.dv2vd[data] /vector of dictionaries
allcusips:*l.i.sync[‘ejv_mike;(‘Cusips;)] /all the cusips
allrics:*l.i.sync[‘ejv_mike;(‘pxrics;)] /all the rics
rics:allrics@&allcusips _lin otr /just the ones we want

rics subscribe[‘IDN_SELECTFEED;]'data /subscribe to the rics

Then we need a function to run the set up function, instantiate a copy of the screen variables, and
show them:

.rt.demol: {[]/demol

setup]|] /run the setup function
rcl::.rt.setupOne /set screen vars
‘shows$' .rt.rcl /show the screen
}
9

The first thing you should be wondering is why this function will work, when the previous demo
function wouldn’t, until we changed the logic to examine the ‘status attribute before attempting
to show the screen. Good question! (If you didn’t wonder about that, then you haven’t been pay-
ing attention). In this example, the subscribe function initializes all the fields we will be dis-
playing. This allows us to show the screen even before the fields have Triarch supplied values.
The initial display of the screen will simply show the values used as defaults in subscribe.

So, here’s what the screen looks like when it first comes up:

pending| US620T PX
pending| USD12T PX

pending| US53 N97T DPX|
pending| US54 N98T PX
pending| US NOOT P
pending| US57 NOST PX

A few seconds later, here’s what we see:

SEYSGWN US321T DX [15:17 UST 21MARD 1 5.005000] 5.154
[valid |US620T PX | 15:15 UST 20JUN36 5.070000 290
[valid |USDI2T PX | 15:28] UST 12DEC96 4.995000 275

[valid | US53 NO7T PH| 15:26/ UST 5 3/8 N/97| 100.046875
[valid | US54 _NOBT DPX| 15:26| UST 5 1/2 N/98| 100.281250
[valid | US55_NOOT_DX| 15:27 UST 5 5/8 N/00| 100.296875
val US57_NOGT_DXK| 15:23] UST 5 7/8 N/05 100.843750
valid | US67 B25T PX| 14:57| UST 6 7/8 B/25 110.468750

o nj nf Ln Lnf Lnf O
w
0
(T

.106

&

You may have noticed that the subscribe function does not initialize the status field. It doesn’t
have to. The .md. sub function initializes it for us.

Whe’s In Control?

Occasionally, you may need to write an application in which fields on the screen may be updated
by both user input and real-time data. For example, a bond price/yield calculator may display
real-time data but allow the user to enter an arbitrary price or yield to be run through the price/
yield analytic. The problem with this kind of application is that you never know when real-time
data is going to show up. The user might be typing a price into a field, and right in the middle of
his typing, the field is completely overwritten by the arrival of new real-time data. Clearly what is

10

- M M N EE B B EE EEE EE E S E N

needed is a user controlled switch which toggles the feed on and off. The implementation of such
a switch is straightforward. Rather than actually turning the real-time feed on and off, we can
simply add a flag variable which the various screen dependency definitions test. We can also add
a checkbox to the screen which shows the state of the flag variable, and flips that state when
pressed. It’s also a nice idea to set the editable state attribute on the appropriate fields on the
screen depending on whether the feed is “on” or “off”. The main idea is that real-time data con-
tinues to flow into the real-time directory, .R, but the screen variables are only updated when it is
appropriate to do so.

Here’s the template for enhanced screen:

\d .rt.setupTwo /template for Mode-controlled calculator

Ric..d:"!.R.IDN_SELECTFEED"
Status..d:".R.IDN_SELECTFEED[~!.R.IDN_SELECTFEED;‘MD;\status]”

Time..d:":[.rt.Mode;‘R.IDN_SELECTFEED[;‘TRDTIM_l];._V]”
Time..f:".ul.tsFmt
Name..d:":[.rt.Mode;.R.IDN_SELECTFEED[;\DSPLY_NAME];._V]“
Name..f£:16$
Price..d:“:[.rt.Mode;.R.IDN_SELECTFEED[;\TRDPRC_l];._V]"
Price..f:10.6%
Yield..d:":[.rt.Mode;.R.IDN_SELECTFEED[;‘Yield];._v]"
Yield..f:7.3%

Yield..l:"Yield"

As you can see, the dependency definitions for the Time, Name, Price and Yield fields have been
changed to an if-then-else expression where the condition is the value of . rt.Mode. These fields
will be invalidated if either .rt.Mode changes, or if .R.IDN_SELECTFEED changes. If .rt.Mode
is 0, the value of the field will remain the same (._v). Now let’s examine the new main function:

.rt.demo2:{[]/demo2

setup(] /run the setup function
.rt.Mode:1 /feed; 0: off, 1: on
.rt.Mode. .c: ‘check /make it a check box
.rt.Mode..l..d:":[.rt.Mode; \"Feed is ON\";\"Feed is OFF\"]"
.rt.Mode..t:".rt[rc2; Price. Yield.; ‘e] :~Mode" /adjust edit mode
rc2::.rt.setupTwo /set screen vars
rt.re2..t:*.rt.input_wv;_i]* /trigger on directory
.rt['rec2;~!.rt.rc2; ‘el :0 /protect all fields
.rt..a:: Mode rc2 /arrangement

‘shows$' .rt /show the screen

}

In addition to running the setup function and instantiating a copy of the screen variables, as
before, this function also does a few other things. First, it creates the variable . rt .Mode, which
will be the flag determining whether real-time data flows to the screen or not. As we saw, several
fields on the screen depend on this variable. .rt.Mode will itself appear on the screen as a check-
box widget; the feed will be on when the checkbox is pushed in. The label for . rt .Mode also
depends on its value. The trigger for . rt.Mode adjusts the editable state (protection) of the Price
and Yield fields appropriately. Note also that all the fields in the table are initially set to be non-

11

editable. Another key difference is that this version of the demo shows the checkbox Mode as well
as the screen directory rc2 in the same form, (after setting the arrangement attribute . a) rather
than just the screen directory. This allows the display of .rt.Mode in the same form. The final
enhancement is the placement of a trigger on the screen directory, which comes into play when
the real-time feed is off and the screen is used as a calculator. Here are shots of the screen with
the feed on and off:

4.940000] 5.083
4.950000] 5.159
1

Any change to the screen will fire the trigger. Since dependency invalidation does not fire trig-
gers, the only times the trigger will run are when the editable attribute on the Price or vield field
changes (i.e. when the feed is toggled on or off), or when the feed is off and the user types a price
or a yield into a cell of the table.

Here is the trigger function:

.rt.input:{[v;1] /input
/compute price or yield based on user input

if[~(*i)_in ‘Price ‘Yield;:_n] /only calc for price or yield input
data:Feed[(v@'Ric)@*|i; ‘Data] /indicative data
b: Price=*i /used to determine types

12

BB B B B B B B B B B S B B S T S e |

c:data[asset_templt_cd]='TC /used to determine result price type
inType: (*Yield ' Price)@b /input type

outType: ('Yield ' Price)@~b /output type

resType: (((drate'price)@c), ‘yield)@b /result type
res:calc[.[v;i];data;inType;*_ltime _t] /run the calc function

. [vioutType, *|i;:;res@resType] /update the screen

}

Here are the values of the arguments, v and i, after entering a new price in one of the rows of the
table:

> v
Y.rt.rc2
> 1
(*Price;5)

As you can see, all the information needed to run the price/yield calculator, and set the result back
on the screen is available in, or can be derived from, these variables. One subtlety should be
pointed out. The last line of . rt.input sets a cell of one of the fields in the table, which would
normally fire the trigger. But since the trigger is already executing it is not fired again, which is
the desired effect. When the feed is toggled back on, the screen dependencies will be invalidated
(since they depend on . rt.Mode) and any numbers that have been typed onto the screen in calcu-
lation mode will be overwritten by the latest real-time data. Even if no new data arrived during

the period in which the feed was off, the screen will still be updated with the most recent data in
.R.

One useful rule-of-thumb which can be inferred from these examples is that when mixing real-
time data with user-input data, dependencies should be used to handle the display of real-time
data and triggers should be used to handle the user-input data. Another important point is that it is

often more useful to put a trigger on the directory in which a variable exists, instead of directly on
the variable itself.

13

Appendix A: Sample Scripts

The following four pages contain the three sample scripts mentioned in the paper. These scripts
can be found on-line in the directory /ubs/k/a/rt.

R N . .

/ubs/k/a/rt/rtdemol.k Tue Jan 2 12:29:33 1996 1
/rtdemol.k - companion script for the paper: K and Real-time Data
\1l /ubs/k/md

\e 1

rt:{[]/rt - this function will fail with a rank error
.md.client[]
.md.sub['IDN_MARKETFEED;] ' ‘USH6 ‘TYH6 ‘FVH6
.app.rics..d:"!.R.IDN_MARKETFEED"
.k.app.names..d:".R.IDN_MARKETFEED[;‘DSPLY_NAME]"
.k.app.prices..d:".R.IDN_MARKETFEED[;‘TRDPRC_I]"
k.
¥

=

app.times..d:".R.IDN_MARKETFEED[;‘TRDTIM_l]"
. app.chgs..d:".R.IDN_MARKETFEED[;‘NETCHNG_l]"
‘show$ "' .k.app

- N O N R B R A EE R E R R R R ERER

/ubs/k/a/rt/rtdemo2.k Tue Jan 2 12:29:36 1996 1
/rtdemo2.k - companion script to the paper: K and Real-time Data
\1l /ubs/k/md

\e 1

\d .rt

Feed: ' .R.IDN_MARKETFEED

app.rics..d:"!.R.IDN_MARKETFEED"
app.names..d:".R.IDN_MARKETFEED[;‘DSPLY_NAME]"
app.prices..d:".R. IDN_MARKETFEED(; ® TRDPRC_1]"
app.times..d:".R.IDN_MARKETFEED[;‘TRDTIM_l]"
app.chgs.,d:”.R.IDN_MARKETFEED[;‘NETCHNG_l]"

demo: {
.md.client[]

/setup .R
rics: ‘USH6 ‘TYHG6 ‘FVH6 /rics we want
paths:~‘$((((SFeed),"."),/:($rics)),\:"."),\:".MD.status" /paths to triggers
trigs:(".rt.trig[\"",/:Srics),\:“\"]" /triggers
paths .[;'t;:;]'trigs /set triggers
.md.sub['IDN_MARKETFEED;] 'rics /subscribe

}

trig: {[ricl/trig
‘O:ric," ", ($.(_v)),"\n" /which one got updated
if[~&/‘valid~/:Feed[~!Feed;‘MD;‘status];:_n] /if any are not valid, exit
‘show$'.rt.app /otherwise, show the screen

}

/ubs/k/a/rt/rtdemo3 .k Tue Jan 2 12:29:39 1996 i

/rtdemo3 - companion script to the paper: K and Real-time Data

\l /ubs/k/md /real-time utilities

\l /ubs/k/i/servers /k data server utilities

\1l /ubs/k/£f/b /price-yield analytics

\l /u/mkr/k/a/utils /miscellaneous utilities

\e 1

\d .rt.setupOne /template for basic calculator

Ric..d:"!.R.IDN_SELECTFEED"
Status..d:'.R.IDN_SELECTFEED[~!.R.IDN_SELECTFEED;‘MD;‘Status]"
Time..d:".R.IDN_SELECTFEED[; ‘TRDTIM_1]"
Time..f:'.ul.tsFmt
Name..d:".R.IDN_SELECTFEED[; ‘DSPLY_NAME] *
Name..f:16$
Price..d:“.R.IDN_SELECTFEED[;‘TRDPRC_l]"
Price..f:10.6$
Yield..d:".R.IDN_SELECTFEED[; ‘Yield]"
Yield..£:7.3%

Yield..l:"Yield"

\d .rt.setupTwo /template for Mode-controlled calculator

Ric..d:"!.R.IDN_SELECTFEED"
Status..d:".R.IDN_SELECTFEED[~!.R.IDN_SELECTFEED;‘MD;‘Status]"
Time..d:":[.rt.MOde;.R.IDN_SELECTFEED[;‘TRDTIM_l];._v]"
Time..f:'.ul.tsFmt
Name..d:":[.rt.MOde;.R.IDN_SELECTFEED[;‘DSPLY_NAME];._V]"
Name. .f:16$
Price..d:":[.rt.MOde;.R.IDN_SELECTFEED[;‘TRDPRC_l];._V]"
Price..f:10.6%
Yield..d:":[.rt.Mode;.R.IDN_SELECTFEED[;‘Yield];._v]"
Yield..f:7.3$

Yield..l:"Yield"

\d .xt
FNA:-999999999.0 /floating point NA wvalue
Feed:'.R.IDN_SELECTFEED /real-time directory

calc: {[quote;data; type;trade] /calc
/get yield given price or discount quote
/data is indicative data
/type is ‘Yield or ‘Price (if ‘Price, may be changed to ‘Discount)
/trade is trade date
if[~type=‘Yield;type:*(‘Price‘Discount)@&data[‘asset_templt_cd]=‘TC‘TD]
req:.+((‘given‘rate‘calc_risks‘deal_date);(type;quote;l;trade))
res:.b.calc_rslt[req;datal]
if[~0=res[‘stat]; 'res[‘mesg]]
res|[‘outp]}

demol:{[]/demol

setup|[] /run the setup function
rcl::.rt.setupOne /set screen vars
‘show$'.rt.rcl /show the screen

}

demo2:{[]/demo2
setup]] /run the setup function
.rt.Mode:1 /feed; 0 is off, 1 is on
.rt.Mode. .c: ‘check /make it a check box

-xrt.Mode..1..d:":[.rt.Mode;\"Feed is ON\";\"Feed is OFF\"]" /label depends on state
.rt.Mode..t:".rt['rc2; ‘Price. ‘Yield.; ‘e] : ~Mode" /adjust edit mode

/ubs/k/a/rt/rtdeme3. .k

}

rc2::.rt.setupTwo

e xe2. JErv.rt.inpat v 1]
.rtl‘rc2;~!.rt.xrc2;'el:0
.rt..a:: ‘'Mode‘rc2

‘show$'.rt

input:{[v;i]/input

}

/compute price or yield based on user input

*"in trigger"

\v

\i

if[~(*i)_in ‘Price ‘Yield;:_n]
data:Feed[(v@'‘Ric)@*|i; ‘Datal
b:‘Price=*i
c:data[‘asset_templt_cd]="TC

inType: (‘Yield'‘Price)@b

outType: (‘'Yield'Price)@~b

resType: (((‘drate‘price)@c), ‘yield)@b

res:calc[.[v;1i];data;inType;*_ltime _t]

. [v;outType, *|i;:;res@resType]

setup: {[] /setup

}

if[*@[.md.client;_n;:]

Tue Jan 2 12:29:39 1996 2

/set screen vars
/trigger on directory
/protect all fields
/arrangement

/show the screen

/only calc for price or yield input
/indicative data

/used to determine types

/used to determine result price type
/input type

/output type

/result type

/run the calc function

/update the screen

.ul.suicideNote["You Do NOT Have Access To Reuters Triarch Real-Time Data™;10]

:_nl
otr:*|.i.sync[‘ejv_mike; (‘otr;)]

data:*|.i.sync('ejv_mike; (‘bonds;, $otr)]

data:.ul.dv2vd[data]

allcusips:*|.i.sync['ejv_mike; (‘Cusips;)]
allrics:*|.i.sync[‘'ejv_mike; (‘pxrics;)]

rics:allrics@&allcusips _1lin otr
rics subscribe['IDN_SELECTFEED;] ‘data

subscribe: { [src;ric;data] /subscribe

/subscribes from src, to ric, with indicative

dir:*$".R.",$sxc
id:.md.sublsrc;ric]

. [dir; (id; ‘Rie);:;ric]
.[dir; (id; *Id);:;1id]

.[dir; (id;‘Yield); :;FNA]
.[dir; (id;‘Data);:;data]

. [dir; (id; *TRDPRC_1); :;FNA]
s [dixr; (id; YTRDTIM 1); :; ""]
.[dir; (id; ‘DSPLY_NAME) ; :;""]

.[dir; (~id;'t);:;".rt.update[_v;]'*_1i;"]

id}

update: {[v;i] /update
/trigger for securities receiving data from triarch

if[i~'TRDPRC_1

/suicideNote is an alertbox
/on-the-run cusips

/and indicative data
/vector of dictionaries
/all the cusips

/all the rics

/just the ones we want
/subscribe to the rics

info data; returns id
/realtime dictionary
/subscribe to realtime data
/assign security ric

/id (converted ric)
/initialize yield

/set indicative data dict.
/initialize trade price
/initialize trade time
/initialize display name
/set trigger

res:calc[v['TRDPRC_1];*v[‘Data]; ‘Price;*_ltime _t]

@[v;'Yield;:;res[‘'yield]l]]

Appendix B: MD Documentation

This description of the basic Mp functionality is an excerpt from the document /ubs/itsu/opt/
md/1.0/md.doc.

Except where otherwise noted, all functions return nil (_n) in the absence of errors. Errors are
signalled.

sub[src; item]

Subscribe to the data item identified by the symbols src and item. If this is the first reference
to the item, or if a previous subscription to it has been * closed, the item status is set to
‘pending; otherwise status is unchanged, but an additional image may be sent, updating all
fields at once. This function returns a symbol denoting the base name of the entry in the .r
directory to which data will be delivered; ordinarily this will be the same as item unless item
contains characters which are illegal in x directory entries, in which case the name will be
suitably modified; often this simply means substituting underscore _ for equals =,

unsub([src; item]

Close the subscription to the data item identified by src and item The item status is set to
“closed and updates cease (though they may not cease immediately).

client([]

Announce yourself as a subscription client. This is done automatically by sub and is not ordi-
narily necessary but can be used to permit tracking of global status information in the .r

directory without actually establishing any subscriptions, or to install information about avail-
able sources into the .r directory.

serve[src; server; type; ncache; cb]

Announce yourself as a source provider for the service named by the symbol src. serverisa
symbol identifying the name of the service on the local network (in many cases this will be the

same as src). type is a symbol identifying the type of the records to be served, and (cur-
rently) i

must be *record. ncache is an Integer specifying the maximum number of items that
you are prepared to serve; it may be constrained by per-source configuration limits, cb isa

callback function (or symbol reference to same) that is invoked whenever a subscription
request is received, as in cb[src; item; tag] where src and item are symbols denoting the
source and item being requested, and tag is an integer ID which must be supplied as an argu-
ment to the wimage or wrefuse with which the request is satisfied or denied.

unserve[src]

Terminate service for source sz, Subscribers will see a status message that will set the status
of all subscriptions for that source to * closed.

wimage[src; item; tag; data)
Send a record image for the source and item denoted by src and item. For the initial image

written in response to a subscription request, the integer tag must match the tag supplied with
the request; any subsequent images should supply a value of 0 for the tag. The data is in the

form of a dictionary whose entries are IDN field names (as described above) and whose values
are the corresponding field values. Every image sent must include all fields in the record; it is
not possible to send a partial set of fields in an image and augment that set in a subsequent
update. A new image must be sent in order to add fields to a record. (There is currently no
way to delete fields from a record.)

wrefuse[src; item; tag; text]
Refuse a subscription request for source src and item item with tag tag. A character string
describing the reason for the denial can be supplied in text; alternatively text can contain
the integer value 0 to send no text description, or the integer value 1 to send a system-defined
default message.

wupdate[src; item; datal]
Send an update for the item denoted by src and item. The dictionary data is formatted as
described for wimage but contains only the fields that are being updated. The first update
should not be written until the initial image has been written.

wclose[src; item; text]
Close the subscription for the item identified by src and item. A character string describing
the reason for closing can be supplied in text; alternatively text can contain integer 0 to send
no text, or integer 1 to send a system-defined default message.

wstatus[src; item; status; text]
Send a status message for the item denoted by src and item. status must be either *valia
or ‘invalid. text can contain a character string (which may be empty) describing the status,
or integer 0 to send no text, or integer 1 to send a system-defined default message. A status
message for an item can be sent at any time after the initial subscription request, and in partic-
ular can be sent before the initial image. A ‘valid status message for an item should be sent
prior to the image if there will be any significant delay in sending the image, to prevent the
subscription request from being timed out.

wgstatus[src; status; text]
Send a global status message for source src, pertaining to all items, status must be “valid
or “invalid. text can contain a character string (which may be empty) describing the status,
or integer 0 to send no text, or integer 1 to send a system-defined default message. If all
source service is to be temporarily interrupted, an *invalid global status message should be
issued, followed by a *valid global status message when service is resumed.

idnadd[fname; fid; ftype]
Add, to the map of known record field names, a new name denoted by the symbol £name, with
integer £id (which must be less than 2048) and symbol £type (which must be one of *ALpPHA-
NUMERIC, ‘ALPHANUM_XTND, ‘BINARY, 'ENUMERATED, ‘INTEGER, ‘NUMERIC, ‘PRICE, ‘DATE,
“TIME Or *TIME_SECONDS). If aclient and server wish to define and exchange new fields they
must both add them with idnmap. This interface is Reuters-specific and is likely to change in
the future.

